Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 990
Filtrar
1.
Sci Rep ; 14(1): 8429, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600101

RESUMO

Vulvar lichen sclerosus (VLS) is a chronic and progressive dermatologic condition that can cause physical dysfunction, disfigurement, and impaired quality of life. However, the etiology of VLS remains unknown. The vulvar skin, intestinal and vaginal microbiomes have been postulated to play important roles in the pathogenesis of this disease. The aim of this study was to compare the compositional characteristics of the vulvar skin, vagina, and gut microbiota between perimenopausal or postmenopausal VLS patients and healthy controls. The study involved six perimenopausal or postmenopausal VLS patients which were based on characteristic clinical manifestations and histologic confirmation and five healthy controls. The pruritus severity of each patient was evaluated using the NRS scale, and the dermatology-specific health-related quality of life was assessed using the Skindex-16. Metagenomic sequencing was performed, and the results were analyzed for alpha and beta diversity. LEfSe analysis were used to investigate the microbial alterations in vulvar skin, gut and vagina. KEGG databases were used to analyze differences in functional abundance. The study found significant differences in alpha diversity between the two groups in stool and vaginal samples (P < 0.05). Patients with VLS had a higher abundance of Enterobacter cloacae, Flavobacterium_branchiophilum, Mediterranea_sp._An20, Parabacteroides_johnsoniiand Streptococcus_bovimastitidis on the vulvar skin, while Corynebacterium_sp._zg-913 was less abundant compared to the control group. The relative abundance of Sphingomonas_sp._SCN_67_18, Sphingobium_sp._Ant17, and Pontibacter_sp_BT213 was significantly higher in the gut samples of patients with VLS.Paenibacillus_popilliae,Gemella_asaccharolytica, and Coriobacteriales_bacterium_DNF00809 compared to the control group. Additionally, the vaginal samples of patients with VLS exhibited a significantly lower relative abundance of Bacteroidales_bacterium_43_8, Bacteroides_sp._CAG:20, Blautia_sp._AM28-10, Fibrobacter_sp._UWB16, Lachnospiraceae_bacterium_AM25-39, Holdemania_filiformis, Lachnospiraceae_bacterium_GAM79, and Tolumonas_sp. Additionally, the butyrate-producing bacterium SS3/4 showed a significant difference compared to the controls. The study found a negative relationship between Sphingobium_sp._Ant17 in stool and Skindex-16 (P < 0.05), while Mediterranea_sp._An20 had a positive correlation with Skindex-16 (P < 0.05) in the skin. Additionally, our functional analysis revealed alterations in Aminoacyl_tRNA_biosynthesis, Glutathione_metabolism, the pentose phosphate pathway, and Alanine__aspartate_and_glutamate_metabolism in the VLS patient group. The study suggests that perimenopausal or postmenopausal patients with VLS have a modified microbiome in the vulvar skin, gut, and vagina. This modification is linked to abnormal energy metabolism, increased oxidative stress, and abnormal amino acid metabolism.


Assuntos
Microbiota , Líquen Escleroso Vulvar , Feminino , Humanos , Líquen Escleroso Vulvar/patologia , Pós-Menopausa , Perimenopausa , Qualidade de Vida , Arritmias Cardíacas , Vagina/patologia
2.
J Med Chem ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669059

RESUMO

Liver fibrosis is a common pathological feature of most chronic liver diseases with no effective drugs available. Phosphodiesterase 1 (PDE1), a subfamily of the PDE super enzyme, might work as a potent target for liver fibrosis by regulating the concentration of cAMP and cGMP. However, there are few PDE1 selective inhibitors, and none has been investigated for liver fibrosis treatment yet. Herein, compound AG-205/1186117 with the dihydropyrimidine scaffold was selected as the hit by virtual screening. A hit-to-lead structural modification led to a series of dihydropyrimidine derivatives. Lead 13h exhibited the IC50 of 10 nM against PDE1, high selectivity over other PDEs, as well as good safety properties. Administration of 13h exerted significant anti-liver fibrotic effects in bile duct ligation-induced fibrosis rats, which also prevented TGF-ß-induced myofibroblast differentiation in vitro, confirming that PDE1 could work as a potential target for liver fibrosis.

3.
Acta Pharmacol Sin ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641745

RESUMO

Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 µg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to ß-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain ß-catenin protein stability by removing the K48 ubiquitin chain from ß-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of ß-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-ß-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for ß-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating ß-catenin-mediated vascular diseases.

4.
Biomater Res ; 28: 0013, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617751

RESUMO

Background: Fibrosis and inflammation due to ureteropelvic junction obstruction substantially contributes to poor renal function. Urine-derived stem-cell-derived exosomes (USC-Exos) have therapeutic effects through paracrine. Methods: In vitro, the effects of USC-Exos on the biological functions of HK-2 and human umbilical vein endothelial cells were tested. Cell inflammation and fibrosis were induced by transforming growth factor-ß1 and interleukin-1ß, and their anti-inflammatory and antifibrotic effects were observed after exogenous addition of USC-Exos. Through high-throughput sequencing of microRNA in USC-Exos, the pathways and key microRNAs were selected. Then, the antifibrotic and anti-inflammatory effects of exosomal miR-122-5p and target genes were verified. The role of the miR-122-5p/SOX2 axis in anti-inflammatory and antifibrotic effects was verified. In vivo, a rabbit model of partial unilateral ureteral obstruction (PUUO) was established. Magnetic resonance imaging recorded the volume of the renal pelvis after modeling, and renal tissue was pathologically analyzed. Results: We examined the role of USC-Exos and their miR-122-5p content in obstructive kidney injury. These Exos exhibit antifibrotic and anti-inflammatory activities. SOX2 is the hub gene in PUUO and negatively related to renal function. We confirmed the binding relationship between miR-122-5p and SOX2. The anti-inflammatory and antifibrotic effects of miR-122-5p were inhibited, indicating that miR-122-5p has anti-inflammatory and antifibrotic effects by inhibiting SOX2 expression. In vivo, the PUUO group showed typical obstructive kidney injury after modeling. After USC-Exo treatment, the shape of the renal pelvis shown a remarkable improvement, and inflammation and fibrosis decreased. Conclusions: We confirmed that miR-122-5p from USC-Exos targeting SOX2 is a new molecular target for postoperative recovery treatment of obstructive kidney injury.

5.
Theor Appl Genet ; 137(5): 102, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607439

RESUMO

KEY MESSAGE: A total of 389 and 344 QTLs were identified by GWAS and QTL mapping explaining accumulatively 32.2-65.0% and 23.7-63.4% of phenotypic variation for 14 shoot-borne root traits using more than 1300 individuals across multiple field trails. Efficient nutrient and water acquisition from soils depends on the root system architecture (RSA). However, the genetic determinants underlying RSA in maize remain largely unexplored. In this study, we conducted a comprehensive genetic analysis for 14 shoot-borne root traits using 513 inbred lines and 800 individuals from four recombinant inbred line (RIL) populations at the mature stage across multiple field trails. Our analysis revealed substantial phenotypic variation for these 14 root traits, with a total of 389 and 344 QTLs identified through genome-wide association analysis (GWAS) and linkage analysis, respectively. These QTLs collectively explained 32.2-65.0% and 23.7-63.4% of the trait variation within each population. Several a priori candidate genes involved in auxin and cytokinin signaling pathways, such as IAA26, ARF2, LBD37 and CKX3, were found to co-localize with these loci. In addition, a total of 69 transcription factors (TFs) from 27 TF families (MYB, NAC, bZIP, bHLH and WRKY) were found for shoot-borne root traits. A total of 19 genes including PIN3, LBD15, IAA32, IAA38 and ARR12 and 19 GWAS signals were overlapped with selective sweeps. Further, significant additive effects were found for root traits, and pyramiding the favorable alleles could enhance maize root development. These findings could contribute to understand the genetic basis of root development and evolution, and provided an important genetic resource for the genetic improvement of root traits in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Humanos , Zea mays/genética , Genômica , Mapeamento Cromossômico , Alelos
6.
Int J Biol Macromol ; : 131637, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636748

RESUMO

Bacterial-infected wound repair has become a significant public health concern. This study developed a novel 3D-printed piezocatalytic SF-MA/PEGDA/Ag@BT (SPAB) hydrogels were fabricated by using digital light processing. These hydrogels exhibited high consistency, mechanical properties and good biocompatibility. Besides, the SPAB hydrogels exhibited excellent piezocatalytic performance and thus could induce piezoelectric polarization under ultrasound to generate reactive oxygen species (ROS). The SPAB hydrogels possessed an antibacterial rate of 99.23 % and 99.96 % for Escherichia coli and Staphylococcus aureus, respectively, under 5 min of ultrasonic stimulation (US) in vitro. The US-triggered piezocatalytic performance could increase antibacterial activity and improve the healing process of the infected wound. Therefore, the 3D printed piezocatalytic SPAB hydrogels could be unutilized as wound dressing in the field of bacterial-infected wound repair.

7.
Anal Chem ; 96(15): 5940-5950, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38562013

RESUMO

Peptide-based supramolecules exhibit great potential in various fields due to their improved target recognition ability and versatile functions. However, they still suffer from numerous challenges for the biopharmaceutical analysis, including poor self-assembly ability, undesirable ligand-antibody binding rates, and formidable target binding barriers caused by ligand crowding. To tackle these issues, a "polyvalent recognition" strategy employing the CD20 mimotope peptide derivative NBD-FFVLR-GS-WPRWLEN (acting on the CDR domains of rituximab) was proposed to develop supramolecular nanofibers for target antibody recognition. These nanofibers exhibited rapid self-assembly within only 1 min and robust stability. Their binding affinity (179 nM) for rituximab surpassed that of the monomeric peptide (7 µM) by over 38-fold, highlighting that high ligand density and potential polyvalent recognition can efficiently overcome the target binding barriers of traditional supramolecules. Moreover, these nanofibers exhibited an amazing "instantaneous capture" rate (within 15 s), a high recovery (93 ± 3%), and good specificity for the target antibody. High-efficiency enrichment of rituximab was achieved from cell culture medium with good recovery and reproducibility. Intriguingly, these peptide nanofibers combined with bottom-up proteomics were successful in tracking the deamidation of asparagine 55 (from 10 to 16%) on the rituximab heavy chain after 21 day incubation in human serum. In summary, this study may open up an avenue for the development of versatile mimotope peptide supramolecules for biorecognition and bioanalysis of biopharmaceuticals.


Assuntos
Produtos Biológicos , Nanofibras , Humanos , Rituximab , Nanofibras/química , Ligantes , Reprodutibilidade dos Testes , Peptídeos/química
8.
Nat Commun ; 15(1): 2177, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467604

RESUMO

Neoadjuvant chemoimmunotherapy has emerged as a potential treatment option for resectable head and neck squamous cell carcinoma (HNSCC). In this single-arm phase II trial (NCT04826679), patients with resectable locally advanced HNSCC (T2‒T4, N0‒N3b, M0) received neoadjuvant chemoimmunotherapy with camrelizumab (200 mg), nab-paclitaxel (260 mg/m2), and cisplatin (60 mg/m2) intravenously on day one of each three-week cycle for three cycles. The primary endpoint was the objective response rate (ORR). Secondary endpoints included pathologic complete response (pCR), major pathologic response (MPR), two-year progression-free survival rate, two-year overall survival rate, and toxicities. Here, we report the perioperative outcomes; survival outcomes were not mature at the time of data analysis. Between April 19, 2021 and March 17, 2022, 48 patients were enrolled and received neoadjuvant therapy, 27 of whom proceeded to surgical resection and remaining 21 received non-surgical therapy. The ORR was 89.6% (95% CI: 80.9, 98.2) among 48 patients who completed neoadjuvant therapy. Of the 27 patients who underwent surgery, 17 (63.0%, 95% CI: 44.7, 81.2) achieved a MPR or pCR, with a pCR rate of 55.6% (95% CI: 36.8, 74.3). Treatment-related adverse events of grade 3 or 4 occurred in two patients. This study meets the primary endpoint showing potential efficacy of neoadjuvant camrelizumab plus nab-paclitaxel and cisplatin, with an acceptable safety profile, in patients with resectable locally advanced HNSCC.


Assuntos
Albuminas , Anticorpos Monoclonais Humanizados , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Paclitaxel , Humanos , Cisplatino , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Terapia Neoadjuvante/efeitos adversos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/induzido quimicamente , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/induzido quimicamente , Imunoterapia , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
9.
Materials (Basel) ; 17(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473465

RESUMO

To enhance the slagging efficiency of the lime-based slag system during the pre-treatment stage of hot metal, a composite calcium ferrite flux based on aluminum industry solid waste was developed in this study. The melting characteristics of the flux and its application in the pre-treatment of hot metal were investigated. The results indicated that the main phases of the composite calcium ferrite were CaFe2O4, Ca2Fe2O5, and Ca2(Fe,Al)2O4. It exhibited high oxidation, high alkalinity, and a low melting point, thereby achieving excellent melting performance. Simulations of various dephosphorization fluxes in the pre-treatment of high-phosphorus hot metal, ordinary hot metal, and kilogram-scale dephosphorization experiment processes were conducted. Under the same experimental conditions, the composite calcium ferrite flux was able to achieve a dephosphorization rate of over 90% and a final phosphorus content of less than 0.02 wt% under high carbon content ([%C] = 3.2 wt%). In the application of hot metal pre-dephosphorization, this flux was able to achieve efficient melting and rapid slagging of lime at a lower temperature, and its slagging time was 50% faster than that of calcium ferrite flux. In addition, this flux enhanced the utilization efficiency of lime during the steelmaking process, effectively prevented the agglomeration of slag, and achieved efficient slag-metal separation. These characteristics were significantly better than the application effect of calcium ferrite flux. This flux has significant implications for the industrial application of deep dephosphorization in the pre-treatment stage of hot metal or the early stage of converter steelmaking.

10.
Int J Biol Macromol ; 264(Pt 2): 130741, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460649

RESUMO

Treatment of diabetic wounds is a major clinical issue. Diabetic wound dressings have higher requirements for anti-oxidant, antibacterial and wound monitoring properties compared to conventional wound dressings. In this study, a novel tannic acid (TA)/quaternized carboxymethyl chitosan (QCMCS)/oxidized sodium alginate (OSA)@carbon quantum dots (CQD) (TA/QCMCS/OSA@CQD) hydrogels for promoting diabetic wound healing and real-time monitoring have been developed. The TA/QCMCS/OSA@CQD hydrogels exhibited excellent self-healing, antibacterial and antioxidant properties. Besides, these hydrogels possessed good biocompatibility and effective hemostasis in a mouse liver injury model and significantly facilitated the healing process in a diabetic wound model. In addition, these hydrogels can reliable and timely measure the diabetic wound pH information by collecting image signals of hydrogels to monitor the healing status. Therefore, the pH responsive TA/QCMCS/OSA@CQD hydrogels could be utilized as wound dressing for promoting diabetic wound healing and real-time monitoring.


Assuntos
Quitosana , Diabetes Mellitus , Polifenóis , Animais , Camundongos , Alginatos , Antibacterianos , Antioxidantes , Carbono , Modelos Animais de Doenças , Hidrogéis , Concentração de Íons de Hidrogênio
11.
ACS Nano ; 18(13): 9431-9442, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507745

RESUMO

The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Cirurgia Assistida por Computador , Humanos , Luminescência , Neoplasias/patologia , Nanopartículas/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-38518086

RESUMO

OBJECTIVE: To quantitatively analyze the morphological characteristics of osteophytes in DISH and syndesmophytes in AS, and summarize different ossification patterns to help identify the two diseases. Associated factors for new bone formation would be investigated. METHODS: Fifty patients with DISH and 50 age-, sex-, CT examination site- matched patients with AS were enrolled. Radiographic and clinical data were reviewed. Osteophytes (syndesmophytes) in front of each vertebral body and the corresponding intervertebral disc space were defined as vertebral osteophytes unit (VOU). The volume, angle and location (contralateral, ipsilateral, bilateral) of osteophytes in each VOU were measured and compared between DISH and AS groups. RESULTS: In each VOU, the volume and angle of osteophytes in DISH were significantly larger. The best osteophytes volume and angle cutoff value in predicting DISH was 0.59 cm3 and 40.15°. Contralateral, bilateral, ipsilateral osteophytes were recorded in 59.32%, 36.38%, 4.3% of assessed VOUs in patients with DISH and 64.78%, 29.31%, 5.91% in AS (p<0.001), respectively. As to ipsilateral osteophytes, the volume was inversely correlated with the center of the vertebral body to the center of the descending aorta (DISH: r = -0.45, p= 0.01; AS: r = -0.83, p<0.001). Advanced age, disease duration, smoking and overweight contribute to the progression of osteophytes and syndesmophytes. CONCLUSION: Morphological features of osteophytes are helpful to distinguish DISH with AS. Aortic pulsations inhibit or hinder new bone formation in both DISH and AS. Maintaining normal BMI could postpone osteophytes formation.

13.
J Transl Int Med ; 12(1): 5-21, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38525439

RESUMO

Gastric cancer (GC) ranks third among cancers in terms of mortality rate worldwide. A clear understanding of the mechanisms underlying the genesis and progression of GC will contribute to clinical decision making. N6-methyladenosine (m6A) is the most abundant among diverse mRNA modification types and regulates multiple facets of RNA metabolism. In recent years, emerging studies have shown that m6A modifications are involved in gastric carcinoma tumorigenesis and progression and can potentially be valuable new prospects for diagnosis and prognosis. This article reviews the recent progress regarding m6A in GC.

14.
Chem Sci ; 15(11): 3920-3927, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487249

RESUMO

Stimuli-responsive aggregation-induced emission (AIE) materials are highly sensitive and rapidly responsive to external signals, making them ideal solid materials for anti-counterfeiting encryption. However, the limited conformational and packing variations resulting from regio-isomerization with a single substituent restricts the stimuli-responsive behavior of these materials. In this work, several AIE-active regio-structural isomers based on the salicylaldehyde Schiff base scaffold have been straightforwardly obtained through multiple substitutions with bromide and triphenylamine moieties. Solvent-effect experiments demonstrate their different orders of charge-transfer and excited-state intramolecular proton transfer upon photoexcitation, indicating the regulation of excited-state processes via multi-site isomerization. These isomers also demonstrate mechanochromism and acidichromism, allowing for adjustable stimuli-responsive effects. As a demonstration, p-Br-TPA with both mechanochromism and acidichromism can be synergistically utilized for multi-level decryption. This study successfully regulates the evolution of excited states through multi-site isomerization, offering a general approach for achieving tunable stimuli-responsive properties in AIE-active salicylaldehyde Schiff bases toward multi-level decryption.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38489169

RESUMO

BACKGROUND: At present, most articles mainly focused on the diagnosis of thyroid nodules by using artificial intelligence (AI), and there was little research on the detection performance of AI in thyroid nodules. OBJECTIVE: To explore the value of a real-time AI based on computer-aided diagnosis system in the detection of thyroid nodules and to analyze the factors influencing the detection accuracy. METHODS: From June 1, 2022 to December 31, 2023, 224 consecutive patients with 587 thyroid nodules were prospective collected. Based on the detection results determined by two experienced radiologists (both with more than 15 years experience in thyroid diagnosis), the detection ability of thyroid nodules of radiologists with different experience levels (junior radiologist with 1 year experience and senior radiologist with 5 years experience in thyroid diagnosis) and real-time AI were compared. According to the logistic regression analysis, the factors influencing the real-time AI detection of thyroid nodules were analyzed. RESULTS: The detection rate of thyroid nodules by real-time AI was significantly higher than that of junior radiologist (P = 0.013), but lower than that of senior radiologist (P = 0.001). Multivariate logistic regression analysis showed that nodules size, superior pole, outside (near carotid artery), close to vessel, echogenicity (isoechoic, hyperechoic, mixed-echoic), morphology (not very regular, irregular), margin (unclear), ACR TI-RADS category 4 and 5 were significant independent influencing factors (all P < 0.05). With the combination of real-time AI and radiologists, junior and senior radiologist increased the detection rate to 97.4% (P < 0.001) and 99.1% (P = 0.015) respectively. CONCLUSONS: The real-time AI has good performance in thyroid nodule detection and can be a good auxiliary tool in the clinical work of radiologists.

16.
Biomed Pharmacother ; 173: 116373, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442672

RESUMO

Alzheimer's disease (AD), characterized by cognitive dysfunction and other behavioral abnormalities, is a progressive neurodegenerative disease that occurs due to aging. Currently, effective drugs to mitigate or treat AD remain unavailable. AD is associated with several abnormalities in neuronal energy metabolism, such as decreased glucose uptake, mitochondrial dysfunction, and defects in cholesterol metabolism. Amp-activated protein kinase (AMPK) is an important serine/threonine protein kinase that regulates the energy status of cells. AMPK is widely present in eukaryotic cells and can sense and regulate energy metabolism to maintain energy supply and demand balance, making it a promising target for energy metabolism-based AD therapy. Therefore, this review aimed to discuss the molecular mechanism of AMPK in the pathogenesis of AD to provide a theoretical basis for the development of new anti-AD drugs. To review the mechanisms of phytochemicals in the treatment of AD via AMPK pathway regulation, we searched PubMed, Google Scholar, Web of Science, and Embase databases using specific keywords related to AD and phytochemicals in September 2023. Phytochemicals can activate AMPK or regulate the AMPK pathway to exert therapeutic effects in AD. The anti-AD mechanisms of these phytochemicals include inhibiting Aß aggregation, preventing Tau hyperphosphorylation, inhibiting inflammatory response and glial activation, promoting autophagy, and suppressing anti-oxidative stress. Additionally, several AMPK-related pathways are involved in the anti-AD mechanism, including the AMPK/CaMKKß/mTOR, AMPK/SIRT1/PGC-1α, AMPK/NF-κB/NLRP3, AMPK/mTOR, and PERK/eIF2α pathways. Notably, urolithin A, artemisinin, justicidin A, berberine, stigmasterol, arctigenin, and rutaecarpine are promising AMPK agonists with anti-AD effects. Several phytochemicals are effective AMPK agonists and may have potential applications in AD treatment. Overall, phytochemical-based drugs may overcome the barriers to the effective treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
17.
BMC Surg ; 24(1): 78, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431572

RESUMO

PURPOSE: Gasless robot-assisted transaxillary hemithyroidectomy (RATH) is regarded as an alternative surgical option for thyroid operations. However, the associated steep learning curve is a clinical concern. This study evaluated the learning curve of RATH for surgeons without experience of endoscopic surgery and the early surgical outcomes of RATH. METHODS: We conducted a retrospective study of patients who underwent gasless RATH and conventional hemithyroidectomy (CH) at Sun Yat-sen University Cancer Center, Guangzhou, China, from June 2021 to August 2022. The learning curve and early surgical outcomes of gasless RATH were evaluated. And the early surgical outcomes of gasless RATH were compared to CH. RESULTS: In total, 105 patients who underwent gasless RATH and 104 patients who underwent CH were matched and assessed. The cumulative sum techniques (CUSUM) analysis showed that the peak point of gasless RATH operative time occurred at the 31st case. No clear single peak was identified in the CUSUM plot for drainage amount and blood loss. No significant difference in perioperative complications was observed between these two groups. Moreover, the number of postoperative patients who got sense of thyroid area traction were fewer in the gasless RATH group (n = 11, 10.5%) than in the CH group (n = 32, 30.8%). CONCLUSION: Gasless RATH can be considered as an alternative approach to the conventional open procedure, as it is an easy remote access technique, with shorter learning curves and certain advantage such as less sense of thyroid area traction.


Assuntos
Robótica , Neoplasias da Glândula Tireoide , Humanos , Curva de Aprendizado , Neoplasias da Glândula Tireoide/cirurgia , Robótica/métodos , Estudos Retrospectivos , Tireoidectomia/métodos , Complicações Pós-Operatórias/etiologia
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 312: 124048, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387412

RESUMO

Due to the acidic tumor microenvironment caused by metabolic changes in tumor cells, the accurate pH detection of extracellular fluid is helpful for doctors in precise tumor resection. The combination of Raman spectroscopy and deep learning provides a solution for pH detection. However, most existing studies use one-dimensional convolutional neural networks (1D-CNNs) for spectral analysis, which limits the performance due to insufficient feature extraction. In this work, we propose a 2D triple-branch feature fusion network (TriFNet) for accurate pH determination using surface-enhanced Raman spectra (SERS). Specifically, we design a triple-branch network structure by converting Raman spectra into three types of images to extensively extract complex patterns in spectra. In addition, an attention fusion module, which leverages the complementarity among features in both space and channel, is designed to obtain the valuable information, achieving further accurate pH determination. On our Raman spectral dataset containing 14,137 samples, we achieved mean absolute error (MAE) of 0.059, standard deviation of the absolute error (SD) of 0.07, root mean squared error (RMSE) of 0.092, and coefficient of determination (R2) of 0.991 on the test set. Compared with other published methods, the four metrics showed an average improvement of 47%, 39%, 43%, and 6%, respectively. In addition, visualization validates the diagnostic capability of our model to correlate with biomolecular signatures. Meanwhile, our model has robustness to different SERS chips. These results prove the potential of our method to develop an effective technology based on Raman spectroscopy for accurate pH determination to guide surgery.


Assuntos
Benchmarking , Análise Espectral Raman , Líquido Extracelular , Redes Neurais de Computação , Concentração de Íons de Hidrogênio
19.
Food Chem ; 444: 138672, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38330614

RESUMO

Salmonella is one of the most prevalent pathogens causing foodborne diseases. In this study, a novel electrochemical immunosensor was designed for the rapid and accurate detection of Salmonella typhimurium (S. typhimurium) in milk. Platinum nanoparticles and Co/Zn-metal-organic framework @carboxylic multiwalled carbon nanotubes in the immunosensor acted synergistically to enhance the sensing sensitivity and stability. The materials and sensors were characterised using X-ray diffractometry, scanning electron microscopy, Fourier-transform infrared spectroscopy, differential pulse voltammetry, cyclic voltammetry, and other techniques. The optimised immunosensor showed a linear response for S. typhimurium concentrations in the range from 1.3 × 102 to 1.3 × 108 CFU mL-1, with a detection limit of 9.4 × 101 CFU mL-1. The assay also demonstrates good specificity, reproducibility, stability, and practical application potential, and the method can be extended to other foodborne pathogens.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanotubos de Carbono , Animais , Salmonella typhimurium , Estruturas Metalorgânicas/química , Nanotubos de Carbono/química , Leite/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Platina/química , Imunoensaio , Técnicas Eletroquímicas/métodos , Limite de Detecção , Ouro/química
20.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 356-365, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38419499

RESUMO

Currently, platinum agents remain the mainstay of chemotherapy for ovarian cancer (OC). However, cisplatin (DDP) resistance is a major reason for chemotherapy failure. Thus, it is extremely important to elucidate the mechanism of resistance to DDP. Here, we establish two DDP-resistant ovarian cancer cell lines and find that caseinolytic protease P (CLPP) level is significantly downregulated in DDP-resistant cell lines compared to wild-type ovarian cancer cell lines (SK-OV-3 and OVcar3). Next, we investigate the functions of CLPP in DDP-resistant and wild-type ovarian cancer cells using various assays, including cell counting kit-8 assay, western blot analysis, immunofluorescence staining, and detection of reactive oxygen species (ROS) and apoptosis. Our results show that CLPP knockdown significantly increases the half maximal inhibitory concentration (IC 50) and mitophagy of wild-type SK-OV-3 and OVcar3 cells, while CLPP overexpression reduces the IC 50 values and mitophagy of DDP-resistant SK-OV-3 and OVcar3 cells. Next, we perform database predictions and confirmation experiments, which show that heat shock protein family A member 8 (HSPA8) regulates CLPP protein stability. The dynamic effects of the HSPA8/CLPP axis in ovarian cancer cells are also examined. HSPA8 increases mitophagy and the IC 50 values of SK-OV-3 and OVcar3 cells but inhibits their ROS production and apoptosis. In addition, CLPP partly reverses the effects induced by HSPA8 in SK-OV-3 and OVcar3 cells. In conclusion, CLPP increases DDP resistance in ovarian cancer by inhibiting mitophagy and promoting cellular stress. Meanwhile, HSPA8 promotes the degradation of CLPP protein by regulating its stability.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Endopeptidase Clp , Proteínas de Choque Térmico HSC70/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...